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Molecular dynamics �MD� simulations are performed for six- and seven-dimensional hard-hypersphere
fluids. The equation of state, velocity autocorrelation function, self-diffusion coefficient, shear viscosity, and
thermal conductivity are determined as a function of density. The molecular dynamics results for the equation
of state are found to be in excellent agreement with values obtained from theoretical approaches and previous
MD simulations in seven dimensions. The short-time behavior of the velocity autocorrelation function is well
described by the Enskog exponential approximation. The Enskog predictions for the self-diffusion coefficient
and the viscosity agree fairly well with the simulation data at low densities, but underestimate these quantities
at higher densities. Data for the thermal conductivity are in fine agreement with Enskog theory for all densities
and dimensions studied.
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I. INTRODUCTION

It is well known that the structure of fluids is mostly de-
termined by the repulsive portion of the interaction potential
between their constituent molecules. Hence, hard spheres of-
fer insight into the behavior of real fluids and provide a good
starting point in modeling the thermophysical properties of
real fluids. There have been a variety of previous studies of
the structure and thermodynamic properties �e.g., equation of
state� of hard-hypersphere fluids �1–13� in dimensions higher
than 3. Much of this previous work focused on the static and
thermodynamic properties of hard-hypersphere fluids. There
have been relatively few investigations of the transport prop-
erties of these fluids above three dimensions.

A kinetic theory of hard hyperspheres has been developed
�14� in the limit of infinite dimensions as a possible reference
system for investigating theories in finite dimensions
�14–17�. Most of the previous work on transport coefficients
in higher dimensions has focused on the self-diffusion coef-
ficient. Michels and Trappeniers �1� obtained the first mo-
lecular dynamics results on diffusion in four and five dimen-
sions. Their work was extended by Lue �11� who also
computed the shear viscosity and thermal conductivity. Some
theoretical analysis of the self-diffusion coefficient was done
by Amoros, Maeso, and Villar �18�.

In this article, we apply event-driven, equilibrium mo-
lecular dynamics �MD� simulations to examine the static and
dynamic properties of hard hyperspheres in six and seven
dimensions. In addition to the equation of state, we have also
investigated the short-time behavior of the velocity autocor-
relation function and the transport coefficients such as the
self-diffusion coefficient, the shear viscosity, and the thermal
conductivity.

The remainder of this paper is organized as follows. In the
following section, the details of the molecular dynamics
simulations are given. In Sec. III, the results of the simula-
tion work are presented. Finally, the major findings of this
work are summarized in Sec. IV.

II. SIMULATION DETAILS

The algorithm used to perform the MD simulations for the
hard hyperspheres is a straightforward generalization to arbi-
trary dimension d of the standard Alder-Wainwright �19� al-
gorithm for three-dimensional hard spheres. A hypercubic
simulation box was employed with periodic boundary condi-
tions. The MD simulations in six dimensions were performed
with N=4096 hyperspheres whereas the simulations in seven
dimensions were done with N=2187 or N=4000 hyper-
spheres. For the low-density studies, the systems were
started in a hypercubic lattice configuration. For the higher-
density simulations the starting configurations were obtained
by taking a low-density configuration and performing an MD
simulation in which the diameter of the hyperspheres grows
linearly with time �20�; once the required density is
achieved, this stage of the simulation is halted. For each
density, the initial configuration was equilibrated for a dura-
tion of 106 collisions. Ten separate production runs �trajecto-
ries�, each consisting of 106 collisions, were then performed.
The system properties of interest were averaged over these
runs, and the statistical errors of the results are reported as
one standard deviation from their mean values.

One of the properties that was monitored is tavg, the mean
time between collisions for a given particle. For a simulation
of N hyperspheres which consists of Ncoll collisions in a pe-
riod of time �, the mean time between collisions is given by
tavg=�N / �2Ncoll�. The compressibility factor Z is defined as
Z=�P /� �where �=1/ �kBT�, kB is Boltzmann’s constant,
and T is the absolute temperature�, P is the pressure, and � is
the number density. Z is directly related to tavg by �11�
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Z = 1 +
���m�2�1/2

2dtavg
, �1�

where m and � are the hypersphere mass and diameter, re-
spectively.

The transport coefficients D, �, and � were computed
directly from the appropriate Einstein formula �21�. The self-
diffusion coefficient is

D = lim
t→	

1

2d

�

�t
��Ri�t + t0� − Ri�t0��2� , �2�

where Ri�t� is the position of particle i at time t and t0 is the
time origin used for averaging. The shear viscosity was com-
puted using the relation �22,23�

� = lim
t→	

1

2VkBT

�

�t
��W��t + t0� − W��t0��2� , �3�

where

W��t + t0� − W��t0� = �
collisions

�
tc�
k=1

N

xk̇myk̇ + yij
mxi
˙	 .

�4�

Here, 
tc is the time between collisions, i and j are the
indices of the particles involved in each binary collision, and
V is the volume of the simulation box. The thermal conduc-

tivity was computed using the relation �22,23�

� = lim
t→	

1

2VkBT2

�

�t
��W��t + t0� − W��t0��2� , �5�

where

W��t + t0� − W��t0� = �
collisions

�
tc�
k=1

N

ẋk

mvk
2

2
+ xij


mvi
2

2 	 . �6�

The values of the various W’s were collected at regular time
intervals with spacing approximately tavg/20. A straight line
is fit to the last 80 values of these displacements, and the
slope of this fit is used in Eqs. �2�, �3�, and �5� to determine
the transport coefficients.

The normalized velocity autocorrelation function �VAF�
as a function of time t, ��t�, has been computed by averaging
over all particles N and all possible velocity origins for the
given time displacement, as well as over each of the ten
trajectories. Time origins were defined at intervals of roughly
tavg/20; a total of 100 time intervals were used, which cor-
responds to a maximum time displacement of roughly 5tavg.

III. RESULTS AND DISCUSSIONS

Tables I and II present the simulation results for six and
seven dimensions, respectively. All quantities are given in
reduced hard-hypersphere units �i.e., � is the unit of length,
kBT is the unit of energy, and m is the unit of mass�.

A. Equation of state

Padé fits were developed by Bishop and Whitlock �24�
from the high-precision results for the first ten virial coeffi-
cients, as reported by Clisby and McCoy �25� and Clisby
�26�. In six dimensions, the Padé fit is given by

Z�4,5� =
1 + 5.6358� + 11.648�2 + 10.539�3 + 3.4170�4

1 + 3.0520� + 1.4857�2 − 0.8228�3 + 0.0694�4 + 0.0154�5 �7�

and

Z�5,4� =
1 + 5.4689� + 10.758�2 + 8.8023�3 + 1.9483�4 − 0.4313�5

1 + 2.8851� + 1.0270�2 − 0.9939�3 + 0.1830�4 , �8�

whereas in seven dimensions, it is given by

Z�4,5� =
1 + 5.8810� + 12.461�2 + 11.291�3 + 3.5776�4

1 + 3.5187� + 2.5736�2 − 0.4615�3 − 0.0638�4 + 0.0261�5 �9�

and

TABLE I. Six-dimensional results for N=2000.

� tavg D � �

0.5 0.07572±0.00006 0.244±0.003 0.29±0.02 1.6±0.2

0.6 0.05838±0.00006 0.188±0.002 0.39±0.03 2.1±0.3

0.8 0.03754±0.00004 0.121±0.002 0.69±0.06 3.5±0.5

1.0 0.02583±0.00002 0.0797±0.0008 1.11±0.09 6±1

1.2 0.01854±0.00002 0.0513±0.0006 1.9±0.2 9±2

1.4 0.01370±0.00001 0.0314±0.0004 3.4±0.2 13±3

1.6 0.01035±0.00002 0.0170±0.0003 7±1 20±3

1.8 0.00794±0.00002 0.0072±0.0002 15±2 25±7

2.0 0.00612±0.00008 0.0019±0.0002 43±8 40±20
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Z�5,4� =
1 + 4.6594� + 5.8738�2 − 1.3949�3 − 6.6540�4 − 2.7188�5

1 + 2.2970� − 1.1277�2 − 2.4788�3 + 0.4591�4 . �10�

The simulation results for the variation of the compress-
ibility factor with density are presented in Fig. 1. In six and
seven dimensions, the simulation data are well described by
both the �4,5� and �5,4� Padé approximants. In seven dimen-
sions, our MD data for the equation of state are also in ex-
cellent agreement with the MD data of Robles, de Haro, and
Santos �10�, who used systems of 64 particles.

B. Velocity autocorrelation function

Figure 2 presents the VAF’s for six-dimensional hard-

hypersphere fluids for all nine densities studied ��
=0.5–2.0�. The density decreases going from left to right. A
negative backscattering region is apparent at densities higher
than about 1.0. Bishop, Michels, and de Schepper �27� ex-
tended the Enskog theory developed by de Schepper, Ernst,
and Cohen �28�, which related the value of the self-diffusion
coefficient DE to tavg, to obtain an expression for DE:

DE =
�1/2

4�Z − 1�
=

dtavg

2
= tE, �11�

where tE is the Enskog time scale. Bishop and co-workers
�27� have previously studied the short-time behavior of the

TABLE II. Seven-dimensional results for N=2187 and 4000.

� N tavg D � �

0.6 2187 0.06236±0.00005 0.231±0.004 0.34±0.03 2.1±0.2

0.6 4000 0.06234±0.00007 0.230±0.002 0.33±0.04 1.9±0.4

0.7 2187 0.05063±0.00006 0.187±0.001 0.39±0.02 2.5±0.3

0.8 2187 0.04194±0.00005 0.156±0.002 0.49±0.05 2.9±0.3

0.8 4000 0.04194±0.00004 0.156±0.001 0.51±0.03 3.4±0.4

0.9 2187 0.03537±0.00003 0.131±0.002 0.62±0.04 3.5±0.4

1.0 4000 0.03023±0.00004 0.1113±0.0009 0.78±0.08 4.4±0.9

1.1 4000 0.02610±0.00003 0.0950±0.0008 0.93±0.06 6±1

1.2 4000 0.02274±0.00002 0.0812±0.0006 1.1±0.1 7±1

1.3 4000 0.01996±0.00001 0.0698±0.0005 1.4±0.2 7.5±0.9

1.4 4000 0.01763±0.00002 0.0598±0.0004 1.7±0.1 9±2

1.5 4000 0.01567±0.00002 0.0511±0.0006 2.1±0.2 11±1

1.6 4000 0.01398±0.00002 0.0434±0.0003 2.5±0.2 13±2

1.7 4000 0.01254±0.00001 0.0365±0.0004 3.0±0.2 16±3

1.8 4000 0.01128±0.00001 0.0307±0.0003 3.8±0.3 16±2

FIG. 1. Equation of state of hard-hypersphere fluids in six and
seven dimensions. The symbols are the results of MD simulations.
The circles are from the present work for d=6, and the triangles are
from the present work for d=7. The squares are for MD simulation
from Ref. �10� for d=7. The solid lines are the Z�4,5� Padé approxi-
mants, and dotted lines are the Z�5,4� Padé approximants.

FIG. 2. The velocity autocorrelation function for d=6 as a func-
tion of time for �=0.5, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 �from
right to left�.
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VAF of hard hyperspheres in three, four, and five dimensions
and showed that the short-time dependence of the VAF, ��t�,
varied with time as

��t� 
 e−t/DE. �12�

This exponential decay is a consequence of assuming that all
the collisions are uncorrelated. Deviations from this expres-
sion are due to the correlations between collisions, caused by
multiple collisions and backscattering, which become more
likely as the density increases.

In Fig. 3, the short-time behavior of a selection of the
VAF’s is presented with densities ranging from 0.6 to 1.8 in
steps of 0.4. Note that the uncertainties in the simulation
values are smaller than the plotting symbols. From this figure
it is clear that the Enskog approximation is good at short
times even for the highest-density states.

In seven dimensions, 13 densities ��=0.6–1.80� were in-
vestigated. Two states ��=0.6 and 0.8� were studied with
both 2187 and 4000 particles. The corresponding VAF’s for
the two states with differing numbers of particles are identi-
cal within statistical scatter. Figure 4 presents the VAF’s for
seven dimensions. The 2187-particle results are indicated
with dashed lines. As was the case in six dimensions, the

data are very smooth. The density decreases as one goes
from left to right. For this system, the negative backscatter-
ing region is present at densities greater than about 1.4.

Figure 5 presents the short-time behavior of the VAF’s for
a range of densities from 0.6 to 1.8. Note that the data for
�=0.9 are for N=2187, while the rest of the data are for N
=4000. As was found in six dimensions, there is very good
agreement at short times for all the densities examined. The
error bars are again smaller than the plotting symbols. Note
that the fit to theory is even better in seven dimensions than
in six dimensions because at the same reduced densities cag-
ing is less likely in the higher-dimensional system.

C. Transport coefficients

Figure 6 compares the self-diffusion coefficient D from
MD simulations to the value predicted by the Enskog theory,
DE. Our results in six and seven dimensions are similar to
those found by Lue �11� and Amoros, Maeso, and Villar �18�
in three, four, and five dimensions. Enskog theory slightly
underpredicts the value of the self-diffusion coefficient �i.e.,

FIG. 3. The short-time behavior of the velocity autocorrelation
function for d=6: �=0.6 �circles�, �=1.0 �squares�, �=1.4 �tri-
angles�, and �=1.8 �diamonds�. The lines are the Enskog predic-
tions of Eq. �12�.

FIG. 4. The velocity autocorrelation function for d=7 as a func-
tion of time �=0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,
and 1.8 �from right to left�. The dashed lines at �=0.7 and 0.9 are
for N=2187, whereas all the other states are for N=4000.

FIG. 5. The short-time behavior of the velocity autocorrelation
function for d=7: �=0.6 �downward triangles�, �=0.9 with N
=2187 �diamonds�, �=1.2 �upward triangles�, �=1.5 �squares�, and
�=1.8 �circles�. The lines are the predictions of Enskog theory �see
Eq. �12��.

FIG. 6. Variation of the self-diffusion coefficient for d=3
�circles, Ref. �11��, d=4 �squares, Ref. �11��, d=5 �upward tri-
angles, Ref. �11��, d=6 �diamonds, this work�, and d=7 �downward
triangles, this work� dimensions as a function of the Enskog time.
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D /DE is slightly greater than 1.0� at larger Enskog times
�tE�0.07� but significantly overpredicts the value at shorter
Enskog times �tE0.07�. Larger Enskog times correspond to
lower densities since the average time between collisions
will increase as the density is decreased. Moreover, there is a
dimensional effect. Enskog theory becomes uniformly better
�i.e., D /DE becomes closer to 1.0�, at both low and high
Enskog times, as the dimension of the fluid increases. At
higher dimensions, the recollision contributions to the dy-
namics are less significant. At lower values of tE, which cor-
respond to higher densities, the deviations from the Enskog
predictions are extremely large and increase as the density
increases. However, it is interesting to note that the point at
which Enskog theory crosses over from overpredicting to
underpredicting D seems to be relatively independent of the
dimensionality of the system.

With decreasing density, the transport coefficients of flu-
ids approach the Boltzmann limit. For hard-hypersphere flu-
ids, the Boltzmann expression for the viscosity, �B, in hard-
hypersphere units, is given by �29–31�

�B =
�1/2�d + 2�

8dB2
, �13�

where B2 is the second virial coefficient of a d-dimensional
hypersphere:

B2 =
�d/2�d

d��d/2�
. �14�

Here, � is the standard Gamma function. The Boltzmann
expression for the thermal conductivity �B is given by

�B =
�1/2�d + 2�2

16B2�d − 1�
. �15�

Lutsko �31� recently obtained the transport coefficients of
dissipative �nonelastic� hard-sphere fluids using Enskog
theory within the lowest-order Sonine approximation. His
Enskog expression for the viscosity �E in the elastic limit
��=1 in Eq. �99� Ref. �31�� is given by

�E

�B
=

1

�
+

4B2�

d + 2
+ 4��1 +

4d

�
�� B2�

d + 2
�2

, �16�

and for the thermal conductivity �E is given by

�E

�B
=

1

�
+

6B2�

d + 2
+ 4��9

4
+

4�d − 1�
�

	� B2�

d + 2
�2

, �17�

where � is the contact value of the pair correlation function
�i.e., g��+��. Note that � can be directly obtained �13� from
the compressibility factor Z:

� =
�Z − 1�

B2�
. �18�

Combining Eqs. �1� and �18�, � can also be related directly to
the mean time between collisions:

� =
�1/2

2dB2�tavg
. �19�

The three distinct terms in Eqs. �16� and �17� represent
the contributions of the kinetic term, the kinetic-potential
cross term, and the potential term in the transport coefficients
�32,33�. These equations extend previous results in two and
three dimensions.

In two dimensions, Gass �34� found a coefficient of
0.8729 compared to the prediction of 0.8866 for the shear
viscosity �Eq. �16�� and a value of 0.8729 compared to the
predicted 0.8808 for the thermal conductivity �Eq. �17��. In
three dimensions, the calculations of Résibois and de Leener
�35� for the shear viscosity and thermal conductivity in three
dimensions agree exactly with Eqs. �16� and �17�, respec-
tively. The higher-order third Sonine polynomial approxima-
tion leads �32,33� to a coefficient value of 0.761 compared to
Lutsko’s prediction of 0.771 for the shear viscosity and a
value of 0.755 compared to the predicted 0.767 for the ther-
mal conductivity.

FIG. 7. Log-log plot of the variation of the viscosity with tavg for
hard-hyperspherical fluids in dimensions 3–7. Symbols are from
molecular dynamics simulations, and the curves are the predictions
of Enskog theory �Eq. �16��: d=3, circles and solid line; d=4,
squares and long-dashed line; d=5, upward-triangles and dotted
line; d=6, diamonds and dashed-dotted line; d=7, downward-
triangles and short-dashed lines.

FIG. 8. Log-log plot of the variation of the thermal conductivity
with tavg for hard-hyperspherical fluids in dimensions 3–7. Symbols
are from molecular dynamics simulations and the curves are the
predictions of Enskog theory �Eq. �17��: d=3, circles and solid line;
d=4, squares and long-dashed line; d=5, upward-triangles and dot-
ted line; d=6, diamonds and dashed-dotted line; d=7, downward-
triangles and short-dashed lines.
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The variation of the viscosity of hard hyperspheres with
the average time between collisions is shown in Fig. 7. The
symbols indicate our MD simulation data �with error bars�
and the lines are the d-dimensional Enskog theory �Eq. �16��.
The MD data of Lue �11� and the corresponding Enskog
predictions for three, four, and five dimensions are also
shown. It is clearly seen that the simulation and theory are in
excellent agreement at low and moderate densities �large col-
lision times� and that the agreement improves as the dimen-
sion of the system increases.

A similar plot is presented for the thermal conductivities
in Fig. 8. Again excellent agreement is obtained at low and
moderate densities and the agreement improves as the di-
mension increases. In fact, the MD thermal conductivity data
agree even more closely with the d-dimensional Enskog
theory than was found for the shear viscosity. To explain this
result one needs to consider the underlying mechanisms re-
sponsible for shear viscosity and thermal conductivity. Vis-
cosity requires momentum transport whereas thermal con-
ductivity needs energy transport. As the density increases
�tavg decreases� it becomes more difficult for particles to
move but energy exchange is less restricted than momentum

exchange. At higher dimensions these effects are less severe
and they will occur at higher densities.

IV. CONCLUSIONS

Molecular dynamics simulations were performed for six-
and seven-dimensional hard-hypersphere fluids. The equa-
tion of state is in excellent agreement with data from other
workers. We have also obtained very good agreement with
the Enskog predictions for the short-time behavior of the
velocity autocorrelation function in six and seven dimen-
sions, as well as fine agreement with the d-dimensional En-
skog predictions for the shear viscosity and thermal conduc-
tivity. We plan to extend our calculations to higher densities
in order to investigate the properties of the crystalline
phases.
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